- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000100003000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Annala, Toni (4)
-
Möttönen, Mikko (2)
-
Rajamäki, Hermanni (2)
-
Aragon, Max_Jameson (1)
-
Arora, Sanjeev (1)
-
Chen, Danqi (1)
-
Chen, Howard (1)
-
Chevalier, Alexis (1)
-
Frieder, Simon (1)
-
Geng, Jiayi (1)
-
Hoyois, Marc (1)
-
Iwasa, Ryomei (1)
-
Machado, Simon (1)
-
Mizera, Sebastian (1)
-
Prabhakar, Akshara (1)
-
Ren, Zhiyong_Jason (1)
-
Rodriguez_Fanlo, Arturo (1)
-
Thieu, Ellie (1)
-
Wang, Jiachen_T (1)
-
Wang, Zirui (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Annala, Toni; Rajamäki, Hermanni; Möttönen, Mikko (, Communications in Mathematical Physics)
-
Annala, Toni; Hoyois, Marc; Iwasa, Ryomei (, Journal of the American Mathematical Society)We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable -category of non- -invariant motivic spectra, which turns out to be equivalent to the -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this -category satisfies -homotopy invariance and weighted -homotopy invariance, which we use in place of -homotopy invariance to obtain analogues of several key results from -homotopy theory. These allow us in particular to define a universal oriented motivic -ring spectrum . We then prove that the algebraic K-theory of a qcqs derived scheme can be recovered from its -cohomology via a Conner–Floyd isomorphism\[ \]where is the Lazard ring and . Finally, we prove a Snaith theorem for the periodized version of .more » « less
-
Chevalier, Alexis; Geng, Jiayi; Wettig, Alexander; Chen, Howard; Mizera, Sebastian; Annala, Toni; Aragon, Max_Jameson; Rodriguez_Fanlo, Arturo; Frieder, Simon; Machado, Simon; et al (, International Conference on Machine Learning)
An official website of the United States government

Full Text Available